
Write Stress Reduction on 
Mobile Storage: Observations 

and Methodologies
Prof. Li-Pin Chang/張立平

National Chiao Tung University, Taiwan, ROC

Presented at FISS’19@KAIST, Korea
1



Android I/O Stack

2



Multiple Write Amplifications

Application 
data

FTL
(garbage 
collection)

Block I/O
Flash RW

Mobile IO stack 
(journaling, 
cleaning)

>=2 for small 
files

2~5 for 
moderately 
utilized flash

waf

Write performance can be a problem, but storage lifespan is a 
more important issue! 3



Mobile Storage Lifespan

• Is mobile storage lifespan a real problem?
• Smartphone replacement cycle is increasing (3 yr)
• TLC and QLC flash have low P/E cycle endurance
• I/O patterns of mobile storage is write intensive, nearly 

90% of I/Os are write [Kim,FAST’12][Lee,EMSOFT’12]

4



Our Current Efforts

• Flash garbage collection and wear leveling are 
relatively mature topics

• We are focused on how to reduce the amount of 
write traffic bound for mobile storage

• [Storage firmware] Adding extra components for 
transparent write stress reduction

• [File System/Middleware] Revising/redesigning file 
systems and/or middleware

5



Firmware Approaches

• FTL compression [Ji,EMSOFT’17]
• FTL deduplication [Yen,EMSOFT’18]

• These approaches should 
• be lightweight because they are supposed to be 

implemented in FTL
• exploit smartphone I/O behaviors for the best result

6



The Common (mis?)Beliefs

• Smartphones store multimedia contents (e.g., 
picture files and video clips)

• Multimedia contents are not compressible
• Multimedia files do not share common file fragments
• So compression and deduplication are useless in mobile 

storage…?

• Nope. We are not talking about shrinking file size. 
We are talking about reducing write traffic volume!

7



Compression in FTL

• Main questions

• Are data compressible in mobile storage?
• Is it feasible to implement firmware compression?

8



High (Cr<0.25), Medium (0.25≤Cr<0.65),
Low (0.65≤Cr<0.95), Minimal (0.95≤Cr ≤1)

Snapshot Analysis
Storage Snapshot Analysis

compression ratio Cr = (compressed size)/(uncompressed size)
LZO compression algorithm, Cr: the smaller the better

 5 smartphones

9



46% 47%

59%69%

Write Traffic Analysis

10



Online Data Analysis
Observations

• Static storage snapshots are almost incompressible, 
and therefore compression does not help with file 
system fullness

• Online write traffic is, on the other hand, highly 
compressible!

• A large amount of writes are focused on a small set 
of disk blocks 

• Overwriting DB pages to append small records
• Overwriting FS metadata blocks for fsync() operations

11



Selective Block Compression

• Firmware-based compression
• Slow controller SoC and limited RAM

• Compressing incompressible data wastes time and 
energy

• Compression must be selective

• How to predict compression ratios before actual 
data compression?

12



Fast Compression Ratio Prediction 

Georges Hansel, et. al. 1992. Compression and entropy. In Annual Symposium on Theoretical Aspects of 
Computer Science. Springer, 513–528

Fig. Entropy and compression ratio of 4KB disk 
blocks of the volume snapshot of the N6.

Entropy-Based Cr Prediction

• Predictable correlation between entropy and 
compression ratio

• Entropy calculation is much faster than compression 
(1.8% of compression time)

13



Compression Results

• Total block erase count is reduced by ~ 50%
• Slightly decreased write latency
• But slightly degraded read latency (<+5%)

Block Erase Frequency

50%

14



Deduplication in FTL

• Main questions

• Are there sufficiently many duplicate data in mobile 
storage?

• How to reveal as much deduplication as possible?

15



Snapshot Analysis

• Data duplication ratio = 
amount of dudup data / total amount of data

• Very pessimistic results

H1 H2 H3 H4 Z1 Z2 O1 S1
0%

2%

4%

6%

8%

10%

D
up

lic
at

io
n 

R
at

io
(%

)

 8 smartphones

16



Ext4 F2FS

Write Traffic Analysis

• On average, write traffic bound for mobile storage 
carries ~=30% duplicate data

• SQLite journaling
• Ext4 journaling or F2FS cleaning

17



Copy, Copy, and Copy…

18

DB journalDatabase file

(1) Backup old data(2) in-place write (3) Discard backup

File system imageWrite-ahead-
logging journal

(2) Commit changes (in-place)(1) Log changes

SQLite roll-back journaling

Ext4 ordered-mode journaling

A lot of copy-induced data duplication in write traffic 

Spare segmentUsed segment

(2) Migrate valid data(1) Log written data

F2FS cleaning



Integrated Deduplication

• Best deduplication results involve assistance from 
system software (SQLite) and flash management 
(garbage collection)

19



Metadata is Harmful to Deduplication

• DB pages are not aligned to 4 KB boundaries
• Hard to detect duplication
• Dynamic chunking is too expensive

• Revising SQLite file format

20Journal header Offset in DB file Chunk checksum

AA

4 KB

BB

AA BB

4 KB



Deduplication-Aware Flash GC

• Reusing recently invalidated data for deduplication
• Improving deduplication ratio by ~=5%

21

A

B
A’

D

A’’

B’
E

F

A’’’

B’’
E’

F

Recently writtenNot recently written

……

The best victim 
(DAGC)

B’

Incoming 
new data

Fl
as

h 
bl

oc
ks

The best victim 
(Greedy)



Deduplication Results

• Reducing total erase count by ~=50%
• Interestingly, dedup removed many random writes

• Improving write response by ~=40% 
• (dedup faster than compression)

Erase count reduction

48.7%!

22



Compression vs. Deduplication

• Working prototypes on Jasmine OpenSSD
• Time overhead: dedup < compression
• Implementation complexity: compression > dedup
• Total EC reduction: dedup ~= compression

• 2KB dedup is much better than 4KB dedup
• Reluctant to do it… complex sub-page mapping

• Deduplication works with disk encryption, but 
compression does not

23



File-System Approaches

• Exploiting high-level information such as file type
• Not to worry about data encryption
• More RAM space and CPU power
• Current efforts

• F2FS + compression
• F2FS + deduplication

24



One Among Many Questions…

• If F2FS produces duplicate data through cleaning, 
what if F2FS stops to clean?

• To clean
• Lower I/O count
• Efficient medium access

• Not to clean 
• Lower write stress

• Deduplication is a metadata operation, but it 
introduces (or worsenes) file fragmentation

25



Conclusion

• Deduplication and compression do reduce write 
traffic volume of mobile storage

• They do not squeeze more free space however
• Firmware implementation of deduplication and 

compression are feasible
• Host-side disk encryption neutralizes FTL 

compression but FTL deduplication is still applicable

• Working on file-system compression or 
deduplication…

26


	Write Stress Reduction on Mobile Storage: Observations and Methodologies
	Android I/O Stack
	Multiple Write Amplifications
	Mobile Storage Lifespan
	Our Current Efforts
	Firmware Approaches
	The Common (mis?)Beliefs
	Compression in FTL
	Storage Snapshot Analysis
	Write Traffic Analysis
	Observations
	Selective Block Compression
	Entropy-Based Cr Prediction
	Compression Results
	Deduplication in FTL
	Snapshot Analysis
	Write Traffic Analysis
	Copy, Copy, and Copy…
	Integrated Deduplication
	Metadata is Harmful to Deduplication
	Deduplication-Aware Flash GC
	Deduplication Results
	Compression vs. Deduplication
	File-System Approaches
	One Among Many Questions…
	Conclusion

